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Abstract 1

Two equation and higher order closures for compressible turbulence fail to capture the compressible

wall layers' log scahng. Accounting for the distinction between Favre and Reynolds averaged vari-

ables in the compressible moment equations indicate that turbulent transport expressions obtained

using the "variable density approximation" are in error. The error is related to the enstrophy, a

Reynolds averaged variable appearing in the equation for the Favre averaged k; recognizing this fact

an expression for the transport of dissipation consistent with simple mixing length arguments is

obtained. Within the (bruited) context of a gradient transport hypothesis a rational form for the

turbulent transport of the dissipation is found. Modestly better agreement with the well established

compressible Van Driest log scahng is found in a k - E calculation.
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NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1. Introduction

Huang et al. [1], Wilcox [2] have indicated that current k-z turbulence closures do not adequateley

capture the compressible log layer behavior. Part of the problem with these sorts of turbulence clo-

sures appears to result from not adequately recognizing the distinction between Favre and Reynolds

averaged quantities - in the Favre averaged equations both Favre and Reynolds averaged variables

naturally appear. When mean density gradients are important, not accounting for the distinction

contributes to poor results.

In this article a derivation for the modelled dissipation equation for a compressible turbulent flow

is described. While not accounting for many of the complex effects of compressibility, discussed

in a general sense in Lele [4] or in the context of the fluctuating dilatation eg. Ristorcelli [5], the

present development, which involves no modeling assumptions, shows better agreement with the

compressible Van Dreist log law scaling. The usual gradient transfer expression for the turbulent

transport of the dissipation is found to be written as t'tV(fi_s) and not as vtfiVcs as obtained using

the so-called "variable density extension". Huang [3] has communicated that such a form for the

turbulent transport will produce better agreement with the Van Driest scaling. Wilcox [2] also

comments on the fact that, if pc were the dependent variable, then k - _ models would have closer

agreement with the Van Driest scaling. While there has been speculation, Huang [l] about the

properly conserved flow variable, there does not appear to be a clear indication as to what the

proper formulation for the dissipation equation should be. This note indicates the appropriate

form using a simple, but careful mathematical development.

2. Derivation

The nomenclature is now described. Upper case letters will be used to denote mean quantities and

lower case letters fluctuating quantites. Exceptions to this rule are the mean density, fi, (p has no

convenient upper case form) or the mean viscosity ft. Quantities with an asterisk denote the total

field, mean and fluctuating: p* = fi + p' or u_ = Ui + ui. Favre velocities will be denoted using

the set [_, vi] while Reynolds variables are denoted using the set [Ui, ui]. The dependent variables

are decomposed according to u_ = Ui + ui = Vi + vi where < ui >= 0, {vi} = 0, and p* = _ + p'

where < p' >= 0. The averaging operation is indicated using the angle brackets for time means,

< vivj >, and the curly brackets for the density-weighted or Favre mean {vivj}; the two averages

are related by fi{vivj} =< p*vivj >. Without loss of clarity the prime on the fluctuating density is

dropped. The portion of the second-order moment equations,

D

p--_ {vivj} = Pij + IIij + Tijk,k - < uj,pa?p > - < ui,pa'_p >, (1)

of interest are associated with the viscous dissipation type terms, where a_ = ft[ui,j + uj,i -2/3uq.q 5_j].



ThequantitiesPij, Ilij, Tijk,k are, respectively, the production pressure strain and turbulent trans-

port of the Favre averaged Reynolds stress, {vjvj}. Note that in the Reynolds stress equations the

terms arising from the surface forces terms appear naturally in Reynolds, ui, variables while the

problem is posed in Favre, vi, variables. Repeated application of the product rule for differentiation

and the definition of vorticity wi = qjkUj,k produces in the equation for the kinetic energy of the

turbulence the usual dissipation quantities. Keeping only terms of interest produces

-Dk=
p-_- --p{vivj}l,'},j + Tk -- f_ < wkwk > -- 3 fi < dd > (2)

where k = {vjvj}. The solenoidal dissipation has been rewritten ill terms of the enstrophy assuming
4

small scale isotropy. The dilatational dissipation is denoted ec = 5 < dd >. Our interest is with the

portion of the dissipation associated with the vortical modes of the flow. It is conventional to define

the solenoidal dissipation in terms of the Reynolds averaged enstrophy: pe_ = # < wkwk >. In the

"variable density approximation" and high Reynolds log layer limit the dissipation is assumed to

be described by the high Reynolds number form of the Favre averaged equation

D

 -ffi , - [ utc,[ae,,q ],, = p[c lPk - c 2e,] E,/k. (3)

where Pk -{v_vj}Sij. Sij ½[Vi,j +l/),i 2= = -sD_ij] in which D = Up,p is the mean dilatation which

is small in the log layer portion of this flow. Note the location of the mean density in the turbulent

transport term. The enstrophy's replacement by what is treated as a Favre averaged variable,

g,, must be done carefully. The conservation equation for the enstrophy, the primitive Reynolds

averaged variable appearing in the Reynolds stress equations, is, to lowest order,

4 w2
< o; 2 >,t + Uq < w 2 >,q + < UqW2 >,q = --_ < > D + 2 < wisij_i > -# < wi,kwi,k > (4)

The last two terms in the above equations are modeled by the right hands side of equation 3. The

gradient transport hypothesis for the enstrophy transport produces < uqw 2 >= -vt < w 2 >,q,

where vt = c_,k2/E. Replacing the enstrophy with the dissipation using Des = # < o;kwk > produces

D
[l/tO'_ "1 (pS),q ] _peD + P[celPk c,2e,] e,/k. (5)

p -Te - ,q= _ _

The substantial derivative is along the Favre mean streamline. Note the location of the mean

density in the turbulent transport term. In general the appearance of the mean density inside the

first derivative will only be of importance when the mean density gradients are large, v___,,_ v___,

For weak density gradients the variable density assumption and the present derivation will give

the same computational result. Calculations, to be shown shortly, were performed with a standard

k - ¢ model with the usual gradient transport models for transport. The following values for the

empirical constants were used: c, = 0.09, c_1 = 1.44, c,2 = 1.92, ak = 1.0, a, = 1.17.



The betterperformanceof the k - w type of turbulence models comes from, in part, the fact that

a_ = c/k is not a specific (per unit mass) variable and the Favre form of the convection operator is

the correct expression for its turbulent transport.

3. Conclusion

One can follow Huang et al.'s [1] mean density gradient contribution analysis to asses the impact

of these new forms of the transport terms in the /," and z equations. The coefficients multiplying

the density gradient terms in their equation (20) are notably smaller using the present formulation.

Wilcox [2] has conducted a similar analysis in which he arrives at a similar conclusion. The

implication of both these analyses is that the deviation from the law of the wall will be smaller

with these changes to the transport terms. This is substantiated in Figure 1 in which a Mach 8

boundary layer calculation using a k - _ turbulence model is shown. The top line corresponds to

"variable density approximation": the lower line(s) which are virtually indistinguishable correspond

to the empirical compressible log law and an incompressible calculation. The middle lines are

with the new form of the transport in the dissipation equation given above: it shows a modest

improvement. The upper middle line is without the bulk dilatation term. The point of this article

is to present a rational form for the dissipation equation without adding ad hoc corrections. The

compressible moment equations are, of course, complicated by several additional issues: the effects

of the fluctuating dilatation and correlations involving the fluid property fluctuations, for example.

These are the subject of current research and are expected to make additional contributions towards

a better agreement with the well established Van Driest scaling.

To summarize: by careful accounting for the distinction between Favre and Reynolds averaged

variables a different expression for the turbulent transport of the dissipation has been derived. The

expression is consistent with mixing length arguments adequate for wall layers. Calculations for the

Mach 8 bounday layer show that following a rational procedure produces a closer agreement with

the log law of the wall using the conventional models for the other terms in the modeled dissipation

equation.
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Figure 1. The mean profile for the Mach 8 boundary layer: upper line - variable density aproxima-

tion; lower lines - the log law and the incompressible calculation; middle lines - the present theory

with and without (upper) bulk dilatation.
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